Thứ Năm, 27 tháng 2, 2014

Đo và điều khiển tốc độ động cơ một chiều loại nhỏ

Đo lực và ứng suất Trang 5
CHƯƠNG I
CÁC PHƯƠNG PHÁP ĐO BIẾN DẠNG
I. KHÁI NIỆM VỀ BIẾN DẠNG:
Khi đặt một lực vào vật thể, vật thể bò thay đổi hình dạng. Trong
trường hợp tổng quát, sự thay đổi này gọi là biến dạng. Ở đây chúng ta hiểu
biến dạng như là sự thay đổi hình dạng trên 1 đơn vò dài hay là độ thay đổi
chiều dài tương đối.
II. CÁC PHƯƠNG PHÁP ĐO BIẾN DẠNG:
Cùng với sự phát triển của kỹ thuật điện tử, kỹ thuật đầu dò, đặc biệt
từ những năm 1970, người ta đã chế tạo ra rất nhiều dụng cụ đo biến dạng
dựa trên các nguyên lý cơ khí, quang, điện âm thanh và nguyên lý khí nén
Tuy nhiên không có một nguyên lý nào có thể thỏa mãn mọi yêu cầu kỹ
thuật đặt ra. Do đó có rất nhiều hệ thống đo khác nhau để đáp ứng mọi yêu
cầu đo trong phạm vi giải quyết những vấn đề khác nhau, sau đây là các
phương pháp đo:
1. Phương pháp cơ khí:
Phương pháp cơ khí đo biến dạng ngày nay ít được sử dụng, bởi vì đo
biến dạng bằng điện trở chính xác hơn và dễ sử dụng. Tuy nhiên, dụng cụ
đo cơ khí được gọi là Extensometer vẫn còn được sử dụng rộng rãi trong hệ
thống kiểm tra vật liệu.
2. Phương pháp âm thanh:
Phương pháp âm thanh đo biến dạng hiện nay hầu hết được thay đổi
bằng phương pháp đo điện. Phương pháp đo biến dạng bằng âm thanh có nét
độc đáo riêng, ổn đònh không mất độ chính xác theo thời gian. Phương pháp
đo biến dạng bằng âm thanh vẫn được sử dụng dựa trên nguyên lý do ông
R.S.Jerrett sáng chế vào năm 1944.
3. Phương pháp biến dạng bằng điện trở:
Phương pháp đo biến dạng bằng điện trở này được xem là hoàn hảo
nhất, chỉ trừ một số trường hợp đạêc biệt phương pháp này không sử dụng
được. Phương pháp này được xem là phổ biến nhất hiện nay dựa trên
nguyên lý do ông Kelvin phát hiện năm 1856.
4. Phương pháp đo biến dạng bằng chất bán dẫn:
Ưu điểm có độ nhạy cao nhưng giá thành lại cao. Phạm vi đo chòu ảnh
hưởng nhiều về yếu tố nhiệt độ. Phương pháp này dùng để đo biến dạng rất
nhỏ vì nó cực nhạy (với điều kiện nhiệt độ ổn đònh) song rất ít sử dụng.
SVTH :HÀ THANH LÂM - PHẠM TRỌNG QUỲNH
Đo lực và ứng suất Trang 6
5. Phương pháp đo biến dạng bằng phương pháp lưới:
Phương pháp này có từ lâu đời, đặt lưới lên mẫu thử chụp hình trước và
sau khi đạt tải trọng, lưới sẽ bò biến dạng. Phương pháp này có điểm khó
khăn là các biến dạng thường nhỏ do đó hầu hết các trường hợp sự dòch
chuyển các mắt lưới không bảo đảm tính chính xác. Để sử dụng phương
pháp biến dạng đủ lớn (cho chất dẻo cao su) rất hiệu quả.
6. Phương pháp tạo mẫu Hickson (phương pháp lưới):
Đặt tờ giấy nhám lên vật mẫu kéo theo 2 phương để tạo vết trầy. Để
đo biến dạng trên mẫu thử rất khó nên người ta lấy tấm hợp kim mỏng dán
lên chỗ trầy, để in lên tấm phim đó, thay vì đo vật mẫu người ta đo vết trầy
lên tấm phim.
Trong suốt 50 năm qua phương pháp đo biến dạng bằng điện trở đã
được sử dụng rộng rãi vì sự đơn giản cũng như kết quả đáng tin cậy của
chúng.
Do đó trong đề tài này nhóm sinh viên thực hiện đo biến dạng bằng điện
trở.
III. ĐO BIẾN DẠNG BẰNG STRAIN GAGE:
Miếng đo biến dạng (strain - gage) là một cấu kiện điện trở được dùng
để dán lên một bộ phận biến dạng. Mức biến dạng của bộ phận thông qua
lớp keo được truyền sang miếng đo. Miếng đo như vậy phải chòu một sự
biến động tỷ lệ với điện trở của nó.
Strain Gage (SG-miếng đo biến dạng) là một trong những công cụ
quan trọng của kỹ thuật đo lường điện tử được áp dụng đo các đại lượng cơ
học. Đúng như tên gọi, nó được sử dụng để đo biến dạng. Biến dạng của
một vật thể được gây ra bởi tác nhân bên ngoài hoặc bên trong, làm sinh ra
ứng suất. Do vậy trong phân tích ứng suất thực nghiệm người ta sử dụng
rộng rãi phương pháp xác đònh biến dạng.
Các thiết bò biến dạng cho đến nay đã được nhiều hãng chế tạo như:
Hottinger Baldwin, Messttechnik, Micromesures Vishay
Strain Gage được tạo ra với 2 kết cấu là lưới phẳng và dạng ống trụ.
a. Dạng lưới phẳng b. Dạng ống trụ
SVTH :HÀ THANH LÂM - PHẠM TRỌNG QUỲNH
W i n d i n g C o r d
Đo lực và ứng suất Trang 7
1. Hệ số miếng đo (Gage factor):
Sự thay đổi điện trở của một cấu kiện có điện trở biến đổi được tùy
thuộc vào quan hệ sau:
Với R: là điện trở ban đầu của cấu kiện.

L: chiều dài ban đầu của cấu kiện.
F : hệ số miếng đo.
Một miếng đo lý tưởng phải có một điện trở rất lớn, một hệ số đo
cực đại và một mức giới hạn đàn hồi cao, đồng thời lại không bò ảnh hưởng
nhiệt độ cao tác động. Thêm vào đó, hệ số miếng đo luôn luôn bất biến cho
dù mức biến dạng có lớn đến đâu đi chăng nữa.
Để miếng đo có thể hoạt động một cách thích hợp theo sức căng
cũng như sức nén, sợi điện trở phải càng mỏng để cho lớp keo có thể truyền
hoàn toàn mức biến dạng của bộ phận sang miếng đo.
2. Chất keo dán:
a) Keo cyanoacrylate: Rất thực dụng cho việc áp dụng bình
thường trong thời gian ngắn, nhiệt độ áp dụng dưới 100
0
C. Sẽ khô cứng
trong vài giây dưới tác dụng của sức ép.
b) Keo epoxy: Rất có hiệu quả, ổn đònh trong thời gian lâu với
nhiệt độ đến 300
o
c.
c) Keo gốm: Khó áp dụng hơn vì cần thiết bò đặt biệt có vẻ mong
manh yếu ớt, không cho phép dùng với những biến dạng lớn.,sử dụng
được đến 600
o
c.
d) Hàn: Đây là cách thức thực tế nhất để dùng ở nhiệt độ cao cho
các miếng đo trong vỏ bọc kim loại rất đặc.
Cần chú ý là bề mặt để dán phải được tẩy sạch dầu mỡ và sau đó được
trung hòa bằng hóa chất. Để tạo ra bề mặt có tính chất lý tưởng đối với loại
keo này, bề mặt phải được làm sạch vết rỉ để tạo ra bề mặt nhẵn nhưng
không quá bóng.
SVTH :HÀ THANH LÂM - PHẠM TRỌNG QUỲNH
E.F
L
L
F
R
R
=

=

trở điện đổi biếnđộ:
R
R

Đo lực và ứng suất Trang 8
IV. MẠCH CẦU WHEATSTONE:
Cầu Wheatstone là mạch cầu được chọn nhiều nhất trong việc đo
những biến dạng điện trở nhỏ (tối đa 10%) như trong việc dùng các miếng
đo biến dạng.
1. Nguyên lý:
Đối cầu Wheatstone của hình 1:
Tín hiệu đầu ra E
m
qua thiết bò đo với trở kháng Z
m
:
R: điện trở danh nghóa ban đầu của các điện trở R
1
, R
2
, R
3
& R
4
(thường là
120Ω nhưng là 350Ω cho các bộ biến cảm).
V: điện áp cung cấp cho cầu.
Điện áp cung cấp cho cầu là một nguồn năng lượng cung cấp thật ổn
đònh.
Phần lớn Z
m
lớn hơn R rất nhiều (ví dụ như:Vôn kế, bộ khuếch đại với liên
kết trực tiếp) do đó thì phương trình (1) trở thành:
Từ (2) có nhận xét là: sự thay đổi đơn vò điện trở của 2 điện trở nghòch
nhau. Đặc tính này của cầu Wheatstone thường được dùng để bảo đảm tính
ổn đònh nhiệt của mạch đo và cũng để dùng cho các thiết kế đặc biệt.
SVTH :HÀ THANH LÂM - PHẠM TRỌNG QUỲNH
trở. điện của vò đơn đổi Biến:
(1)
4
4
3
3
2
2
1
1
14
R
R
R
R
R
R
R
R
R
R
Zm
R
V
Em










+









+
=
( )
2
4
4
3
3
2
2
1
1
4









+



=
R
R
R
R
R
R
R
RV
Em
m
E
Z m
m
H ì n h 1 : M a ïc h c a àu W h e a t s t o n e
R 1
R 2
R 4
R 3
V
Đo lực và ứng suất Trang 9
2. Cân bằng ban đầu:
Trước khi bắt đầu việc thử nghiệm, điều quan trọng là nên nhớ đem tất
cả các số ghi trên thiết bò trở lại số không. Điều này sẽ làm đơn giản cho
việc thể hiện đo đạc và cho phép dùng thiết bò tốt hơn. Hình trên cho thấy
một phương pháp thường dùng để đảm bảo cho việc cân bằng ban đầu. R
a

điện trở cố đònh, R
b
là một thế kế nhiều vòng. Trong phần lớn thường sử
dụng R
a
=20kΩ, R
b
=40kΩ đủ thích hợp cho việc cân bằng.
Trong trường hợp của các bộ biến cảm, việc cân bằng có thể thực hiện
trực tiếp lên bộ cảm biến bằng cách thêm những điện trở vào mạch các
miếng đo.
3. Các đặc tính của cầu:
a) Bù nhiệt:
Phần lớn các miếng đo biến dạng hiện nay đều có khả năng tự động
cân bằng. Thí dụ, một miếng đo được cân bằng cho phép về lý thuyết sẽ
không cho thấy sự thay đổi điện trở nào khi miếng thép mà miếng đo được
dán lên sẽ giãn nở khi nhiệt độ thay đổi. Đặc tính tự cân bằng này có được
là nhờ việc xử lý nhiệt áp dụng cho kim loại dùng để chế tạo ra miếng đo.
Cách xử lý nhiệt này chỉ có hiệu quả trong một tầm nhiệt độ giới hạn nào
đó.
Bằng cách dùng cầu Wheatstone ta cũng có thể chế tạo mạch cân bằng
nhiệt độ. Như đã biết, sự thay đổi nhiệt độ của 2 nhánh cầu kề nhau sẽ tự
triệt tiêu nên miếng đo cân bằng D được nối vào mạch cầu Wheatstone với
miếng đo hữu công A.
(xem hình vẽ).
SVTH :HÀ THANH LÂM - PHẠM TRỌNG QUỲNH
M a ïc h c a àu c a ân b a èn g b a n đ a àu
E m
R 1
R 2
R 3
R 4
V
R a
R b
Đo lực và ứng suất Trang 10

Mạch cân bằng nhiệt độ.
Miếng đo D cũng có cùng tính chất như miếng đo A và cũng được dán
lên khối vật liệu; trong khi dán các miếng đo, khối vật liệu thử nghiệm này
không bò chòu một lực tác động nào. Ngoài ra 2 miếng đo A&D nên được đặt
gần với nhau càng tốt; tất cả sự thay đổi nhiệt độ chung cả hai miếng đo này
sẽ được triệt tiêu và nó sẽ tự cân bằng nhiệt độ.
b) Sự kết hợp các miếng đo:
Cầu Wheatstone cho phép kết hợp nhiều miếng đo hữu công. Hình trên
cho thấy bốn miếng đo được dán lên thanh mẫu. Khi thanh mẫu bò kéo ra
khỏi bởi lực P, những biến dạng tương tự sẽ là:
ν: hệ số Poisson.
A: tiết diện ngang.
E: Modun đàn hồi.
SVTH :HÀ THANH LÂM - PHẠM TRỌNG QUỲNH
ευεε
εεε
. Và
.
42
21
−==
===
EA
P


R 3
R 4
R 2
R 1
E
V
D
A
Active
Dumm
R3
R4
R2
R1
V
Đo lực và ứng suất Trang 11
Bốn miếng đo như vậy tạo thành cầu Wheatstone nên điện áp ở đầu ra sẽ
là:
Độ uốn của thanh mẫu sẽ được cầu Wheatstone cảm nhận vì các
miếng đo 1 và 3 ( cũng như 2&4) sẽ cộng các biến dạng có dấu nghòch với
nhau và như thế sẽ tự triệt tiêu theo nhiệt độ. Đây là nguyên lý được dùng
thường xuyên trong việc thiết kế các bộ cảm biến.
SVTH :HÀ THANH LÂM - PHẠM TRỌNG QUỲNH
( )
[ ]
.12
εν
+==∆
KEmE
2)&1 thức biểucác lại(xem
4
VF
K
=
Đo lực và ứng suất Trang 12
CHƯƠNG II
KHẢO SÁT CỔNG MÁY IN
BỘ ADC 12 BIT & VÀ CÁC LINH KIỆN CÓ LIÊN QUAN
Giao tiếp với máy tính là việc trao đổi dữ liệu giữa máy tính với một
hay nhiều thiết bò ngoại vi. Hai thiết bò ngoại vi quen thuộc của máy tính là
bàn phím và màn hình. Ngoài ra máy tính còn được bố trí thêm các đường
giao tiếp đa năng khác nhau: giao tiếp nối tiếp (thông qua cổng COM), giao
tiếp song song (cổng LPT) giao tiếp qua khe cắm (SLOT).
Ghép nối nối tiếp cho phép trao đổi thông tin giữa các thiết bò với nhau
theo từng bit một. Số liệu thường được gởi theo từng nhóm bit SDU (Serial
Data Unit) mà nó tạo thành một byte hay một từ Các thiết bò ngoại vi như
Plotter, modem, mouse và printer có thể được ghép nối với PC qua cổng nối
tiếp COM. Các ghép nối của PC cho trao đổi nối tiếp đều theo tiêu chuẩn
RS232C của EIA hoặc CCITT ở châu u. Về mặt kinh tế việc trao đổi
thông tin qua cổng nối tiếp là ít tốn kém nhưng về mặt kỹ thuật thì khá phức
tạp.
Giao tiếp qua khe cắm SLOT cũng phức tạp không kém đòi hỏi việc
gia công thiết bò phải chính xác, hơn nữa việc tháo vỏ máy để gắn SLOT
Card sau mỗi lần đo là vấn đề khó chấp nhận.
Giao tiếp qua cổng song song, dữ liệu truyền song song vì vậy tốc độ
truyền song song thường cao hơn truyền nối tiếp (khoảng từ 40kB/s đến
1MB/s). Hầu hết các máy tính đều trang bò cổng này. Việc trao đổi thông tin
một cách dễ dàng.
I. KHẢO SÁT CỔNG MÁY IN:
Cổng này để dùng giao tiếp với máy in. Đầu cắm có 25 chân và còn
gọi là DB25. Bên trong có 3 thanh ghi có thể truyền số liệu và điều khiển
máy in, mỗi thanh ghi 8 bit. Ba thanh ghi gồm:
• Thanh ghi dữ liệu (Data register):
SVTH :HÀ THANH LÂM - PHẠM TRỌNG QUỲNH
D 7 D 6
D 5 D 4
D 3
D 2 D 1 D 0
D 0
D 1
D 2
D 3
D 4
D 5
D 6
D 7
( P I N 2 )
( P I N 3 )
( P I N 4 )
( P I N 5 )
( P I N 6 )
( P I N 7 )
( P I N 8 )
( P I N 9 )
Đo lực và ứng suất Trang 13
Có đòa chỉ bằng đòa chỉ cơ bản của máy in=378H.
• Thanh ghi trạng thái (Status register).(chỉ đọc):
D
0
,D
1
,D
2
: không sử dụng (thường để ở mức [ 1])
Có đòa chỉ bằng đòa chỉ cơ bản +1=379H.
• Thanh ghi điều khiển :
D
5
,D
6
,D
7
: không sử dụng(thường để ở mức [ 1]).
Đòa chỉ bằng đòa chỉ cơ bản + 2=37AH.
Việc nối máy in với máy tính được thực hiện qua lỗ cắm DB25 ở phía
sau máy tính. Nhưng đây không chỉ la øchỗ nối với máy in mà khi sử dụng
máy tính vào mục đích đo lường và điều khiển thì việc ghép nối cũng thực
hiện qua ổ cắm này. Qua cổng này dữ liệu được truyền đi song song nên đôi
khi còn được gọi là cổng ghép nối song song và tốc độ truyền dữ liệu cũng
đạt đến mức là đáng kể. Tất cả các đường dẫn của cổng này đều tương thích
TTL, nghóa là chúng đều cung cấp một mức điện áp nằm giữa 0V và 5V.
Bên cạnh 8 bit dữ liệu còn có những đường dẫn tín hiệu khác, tổng
cộng người sử dụng có thể trao đổi 1 cách riêng biệt với 17 đường dẫn, bao
gồm 12 đường dẫn ra và 5 đường dẫn vào. Bởi vì 8 đường dẫn dữ liệu. D
0
-D
7
không phải là đường dẫn 2 chiều trong tất cả các loại máy tính, nên sau đây
ta sẽ thấy là D
0
-D
7
chỉ sử dụng như là lối ra, các lối ra khác nữa là STROBE,
SVTH :HÀ THANH LÂM - PHẠM TRỌNG QUỲNH
D 5
A C K
( P I N 1 1 )
( P I N 1 5 )
B U S Y
D 7
( P I N 1 2 )
D 2
D 3
D 1
( P I N 1 0 )
( P I N 1 3 )
D 4
D 0D 6
P E
E R R O R
S L C T
12
D 5
D 7 D 2
D 3
D 1
D 4
D 0D 6
S T R O B E ( P I N 1 )
A F ( P I N 4 )
I N I T ( P I N 1 6 )
S L C T I N ( P I N 1 7 )
I R Q
Đo lực và ứng suất Trang 14
AUTOFEED (AF), INIT và SELECTIN (SLCTIN). Khi trao đổi thông tin
với máy in các đường này đều có chức năng xác đònh.
• Các tín hiệu của đầu cắm DB25:
Chân Tín hiệu Môtả
1 STR Mức tín hiệu thấp truyền dữ liệu tới máy in.
2 D
0
Bit dữ liệu D
0
.
3 D
1
Bit dữ liệu D
1
4 D
2
Bit dữ liệu D
2
.
5 D
3
Bit dữ liệu D
3
.
6 D
4
Bit dữ liệu D
4
.
7 D
5
Bit dữ liệu D
5
.
8 D
6
Bit dữ liệu D
6
.
9 D
7
Bit dữ liệu D
7
.
10 ACK Mức thấp chỉ rằng máy in đã nhận 1 ký tự.
BUSY
PE Báo hết giấy.
SLCT Báo lựa chọn máy in.
AF Tự nạp giấy.
ERROR Báo lỗi máy in.
INIT Reset máy in.
SCLTIN Chọn máy in.
18-25 GND Đất.
II. KỸ THUẬT BIẾN ĐỔI ADC – KHẢO SÁT ADC ICL 7109:
A. Kỹ thuật biến đổi ADC:
Biến đổi Analog – Digital là thành phần cần thiết trong việc xử lý
thông tin và các chức năng điểu khiển sử dụng phương pháp số, tín hiệu thực
tế thì ở dạng Analog. Một hệ thống tiếp nhận dữ liệu giao tiếp A/D để
chuyển đổi tín hiệu tương tự sang tín hiệu số để xử lý.
1. Đặc tính kỹ thuật của mạch ADC:
a. Độ chính xác bất đònh do lượng tử hóa:
Điện áp tương tự liên tục được chia thành 2
n
khoảng gián đoạn ở mỗi
mạch đổi n bit. Các giá trò tương tự cùng một khoảng được biểu thò cùng nhò
phân. Do có một độ chính xác bất đònh ± ½ LSB (Least significant bit).
b. Độ chính xác:
Độ chính xác tuyệt đối là sự sai biệt giữa lý thuyết và trò thực tế của
điện áp tương tự vào cho 1 mã nhò phân ra. Vì một mã số ra tương tứng với 1
SVTH :HÀ THANH LÂM - PHẠM TRỌNG QUỲNH
C O N N E C T O R D B 2 5
1
1 3
1 4
2 5

Không có nhận xét nào:

Đăng nhận xét